
Data Layout Optimization for Portable
Performance

Kamal Sharma1, Ian Karlin2, Jeff Keasler2, James R. McGraw2, and
Vivek Sarkar1

1 Rice University, Houston, TX, USA. {kamal.g.sharma,vsarkar}@rice.edu
2 Lawrence Livermore National Laboratory, Livermore, CA, USA.

{karlin1,keasler1,mcgraw1}@llnl.gov

Abstract. This paper describes a new approach to managing data lay-
outs to optimize performance for array-intensive codes. Prior research
has shown that changing data layouts (e.g., interleaving arrays) can im-
prove performance. However, there have been two major reasons why
such optimizations are not widely used in practice: (1) the challenge of
selecting an optimized layout for a given computing platform, and (2) the
cost of re-writing codes to use different layouts for different platforms.
We describe a source-to-source code transformation process that enables
the generation of different codes with different array interleavings from
the same source program, controlled by data layout specifications that
are defined separately from the program. Performance results for multi-
core versions of different benchmarks with different layouts show a wide
range of benefits on four multicore platforms (IBM POWER7, AMD
APU, Intel Sandy Bridge, IBM BG/Q). For IRSmk, our results show
performance improvements ranging from 22.23× on IBM POWER7 to
1.10× on Intel Sandy Bridge. For LULESH, we see improvements rang-
ing from 1.82× on POWER7 to 1.02× on Sandy Bridge. For SRAD, our
results improved performance from 3.68× on AMD APU to 1.00× on
Sandy Bridge. A major contribution of this paper is the development
of a new automatic optimization algorithm to recommend a layout for
a given source program and specific target machine characteristics. Our
results show that the performance obtained using this algorithm achieves
78%-95% performance of the best manual layout on each platform for
different benchmarks (IRSmk, SRAD, LULESH).

1 Introduction

As computing platforms increase in diversity, “portable performance” has be-
come one of the most challenging problems for application developers. Achieving
good performance on a specific platform often requires coding adjustments to fit
a specific set of machine parameters e.g., number of cores, cache size, cache line
size, number of registers, memory bandwidth, etc. Unfortunately, adjustments
for one platform can impede performance on other platforms. This paper focuses
on data layout optimization, which has been increasing in importance in recent
years. Most programming languages require developers to make array-of-struct
(AoS) or struct-of-array (SoA) decisions (or combinations thereof) early in devel-
opment. For long-lived applications, the following challenge can be encountered
repeatedly (and now with increasing frequency): what to do when a new paral-
lel architecture is introduced with a memory and storage subsystem that would

1

benefit from a different data structure layout in the program? This question is
taking on a new urgency as proposals for exascale architectures increasingly in-
clude major changes in memory and storage structures. With current languages,
a near-complete rewrite of an application is usually required, because each data
access usually needs to be rewritten when the data layout is changed. Histori-
cally, developers of large codes avoid changing data layouts because it involves
changing too many lines of code, the expected benefit of a specific change is dif-
ficult to predict, and whatever works well on one system may hurt on another.
Our approach demonstrates how these obstacles can be overcome.

The rest of this paper is organized as follows. Section 2 describes a motivat-
ing example (IRSmk) and shows that changing array layouts can significantly
impact performance on four different parallel platforms. Section 3 introduces
our extensions to TALC, a source-to-source transformation tool and accompa-
nying memory management runtime that provides the foundation for the work
reported in this paper; TALC enables the same program to be compiled and ex-
ecuted with different data layouts, without requiring any changes to the source
code. Section 4 presents a new automatic optimization algorithm to recommend
an optimized layout for a given source program and target machine. Section 5
presents a summary of empirical results obtained for three benchmarks (IRSmk,
SRAD, LULESH) on four different multicore platforms: IBM POWER7, AMD
APU, Intel Sandy Bridge, and IBM BG/Q. Section 5 also presents results from
the automated layout algorithm that are very close to the hand tuned manual
layouts. Finally, Section 6 summarizes related work, and Section 7 contains our
conclusions and plans for future work.

2 Motivating Example

We use the IRSmk benchmark (a 27-point stencil loop kernel in the ASC
Sequoia Benchmark Codes [2]) as a motivating example to illustrate the impact of
data layouts on performance. IRSmk is an Implicit Radiation Solver for diffusion
equations on a block-structured mesh.

!"#$%$&&$'$&()*$+$&&$,$&(-.$+$&&//$0$1$
$$!"#$%$22$'$2()*$+$22$,$2(-.$+$22//$0$1$
$$$$!"#$%$))$'$)()*$+$))$,$)(-.$+$))//$0$1$
$$$$$$)$$$$'$))$/$22$3$24$/$&&$3$&4$+$
$$$$$$56)7$'$$8596)7$3$.8596)7$/$85:6)7$3$.85:6)7$/$85#6)7$3$.85#6)7$
$$$$$$$$$$$$/$8:96)7$3$.8:96)7$/$8::6)7$3$.8::6)7$/$8:#6)7$3$.8:#6)7$
$$$$$$$$$$$$/$8!96)7$3$.8!96)7$/$8!:6)7$3$.8!:6)7$/$8!#6)7$3$.8!#6)7$
$$$$$$$$$$$$/$:596)7$3$.:596)7$/$:5:6)7$3$.:5:6)7$/$:5#6)7$3$.:5#6)7$
$$$$$$$$$$$$/$::96)7$3$.::96)7$/$:::6)7$3$.:::6)7$/$::#6)7$3$.::#6)7$
$$$$$$$$$$$$/$:!96)7$3$.:!96)7$/$:!:6)7$3$.:!:6)7$/$:!#6)7$3$.:!#6)7$
$$$$$$$$$$$$/$;596)7$3$.;596)7$/$;5:6)7$3$.;5:6)7$/$;5#6)7$3$.;5#6)7$
$$$$$$$$$$$$/$;:96)7$3$.;:96)7$/$;::6)7$3$.;::6)7$/$;:#6)7$3$.;:#6)7$
$$$$$$$$$$$$/$;!96)7$3$.;!96)7$/$;!:6)7$3$.;!:6)7$/$;!#6)7$3$.;!#6)7+$
<$<$<$

Fig. 1: IRSmk Source Code

Figure 1 shows the main loop kernel of IRSmk. For simplicity, we do not
consider arrays starting with the letter x as candidates for layout optimization,
since they all alias to the same array with different offsets. We also ignore array
b since it only occurs in a single write access. This leaves 27 arrays as candidates
for layout optimization (dbl to ufr).

2

Table 1: Performance improvement of different layouts relative to baseline 27 × 1
layout, for different platforms

Platform 27 × 1 9 × 3 3 × 9 1 × 27

IBM POWER7 1.00 4.66 4.66 4.71
AMD APU 1.00 1.26 1.38 1.40

Intel Sandy Bridge 1.00 1.06 1.10 1.10
IBM BG/Q 1.00 1.65 2.14 2.20

As a preview of results to come (with larger number of layouts), we look at
four different array layouts here to illustrate the potential for performance gains
on different platforms. The default layout is the one observed in Figure 1, where
the 27 arrays are stored separately (27 × 1). A simple rewrite can change the
layout by interleaving3 groups of three arrays, thus producing 9 arrays of structs
where each structure contains 3 fields (9 × 3). Another rewrite can interleave
9 arrays each, producing three arrays (3 × 9). The final rewrite interleaves all
27 arrays into one array (1 × 27). We ran these four versions of IRSmk on
four different platforms: IBM Power7, AMD APU, Intel Sandy Bridge, and the
IBM BG/Q, using a problem size of 1003 and all cores within a single node on
each platform. The results are presented in Table 1. All examples show positive
gains for all of the layout options. However, the performance improvement varies
dramatically across different layouts and different platforms.

3 TALC Data Layout Framework
This section describes our extensions to the TALC Framework [14] to sup-

port user-specified and automatic data layouts, driven by a Meta file specifica-
tion. The past framework had limited capabilities in terms of error checking, no
automatic layout selection, did not take into consideration machine characteris-
tics and profiled information and explored limited platforms. TALC stands for
Topologically-Aware Layout in C. TALC is a source-to-source compiler transla-
tion tool and accompanying runtime system that dramatically reduces the effort
needed to experiment with different data layouts. Our extended version of TALC
has been implemented in the latest version of the ROSE [4] compiler infrastruc-
ture. In the process of extending TALC, we have re-implemented its entire code,
added new functionality for automated layouts and extended layout transfor-
mations [3]. Our new tool explores wide range of layouts, considers platform
characteristics and profile information and performs safety and error checking
for different layouts.

Figure 2 shows our extended TALC framework. TALC can be configured to
run in two modes: Automated Layout and User Specified Layout. For both these
modes, a user needs to provide some input to perform data layout transforma-
tions. In the Automated Layout mode, the user provides a field specification. A
field specification file is a simple schema file, which specifies arrays that should
be considered for transformation. The field specification file is necessary because
it enables our tool to only transform the specified arrays (like the 27 arrays in
the IRSmk example discussed in Section 2). Figure 3 shows a sample field spec-

3 In this paper, we use array regrouping and interleaving interchangeably.

3

!"

#$%&'()*"
+(,&$%"

-./.0(%&0"

+(,&$%"12)'34.5"
6&$0*."70&80('"

9.%(":3;." <(%("+(,&$%"
=0(/>?&0'()&/"

:3.;5"
62.*3@*()&/"

70&@;.5"+&&2"
A&$/%>"

B>.0"C/2$%>"

D$/)'."
+3E0(0,"

FG.*$%(E;."
70&80('"

70&80('"
H3/(0,"

6&$0*."70&80('"

9(*I3/."
AI(0(*%.03>)*>"

J./5&0"A&'23;.0"

6(?.%,KF00&0"AI.*L>"

Fig. 2: Extended TALC Framework

View node
{

Field {x:d}
Field {y:d}
Field {z:d}

...
}

Fig. 3: Sample Field Specification file

View node
{

Field {x:d,y:d,z:d}
Field {xd:d,yd:d,zd:d}
Field {xdd:d,ydd:d,zdd:d}
Field {fx:d,fy:d,fz:d}

}

Fig. 4: Sample TALC Meta file

ification file. The View keyword is used internally to parse the data layouts and
would be used in future to determine the scope of layouts. We can safely ignore
the use of View in this paper. The field keyword specifies arrays considered for
layout transformation. Each field has a type associated with it, specified by the
: separator. In this example, d stands for the double data type. Specifying the
data type helps with type checking array subscripts during layout transforma-
tions. Further details about our TALC tool along with a working example can
be found in our technical report [18]. More information on the Automatic Data
Layout Selection will be provided in Section 4.

4 Automatic Data Layout Selection

In this section, we describe the automatic data layout selection algorithm.
The algorithm takes in a user-written field specification file which specifies arrays
that should be considered for transformation, and uses a greedy optimization
algorithm to automatically construct a data layout based on the input program
and target architecture. Here, we present the details about the algorithm.

4.1 Automatic Data Layout Algorithm
Our automated data layout algorithm uses the cache-use factors and plat-

form characteristics to produce a meta file that contains the recommended data
layout. Algorithm 1 shows the automated data layout algorithm. More details
can be found in the related technical report [18]. To begin, each array in the field
specification is placed in its own ArrayGroup. As a heuristic, we disallow arrays
that occur in vectorizable loops as candidates for data layout transformation.
This heuristic is used to avoid performance degradations that may result from

4

Algorithm 1 Automated Data Layout Algorithm

1: procedure AutoDataLayout(ArrayGroupList)
2: for loop L in the program do
3: if loop L is vectorizable (based on vector pragma or compiler analysis)
4: Remove arrays in loop from ArrayGroupList
5: end if
6: end for
7: IsMerge ← true
8: while IsMerge is true do
9: IsMerge ← false

10: for pairs ∈ ArrayGroupList do
11: if (pair writes) > 2*(pair reads+pair read/writes)
12: Ignore pair
13: end if
14: best pair ← pair with highest cache use factor
15: end for
16: if CUF resulting from merging best pair > threshold
17: merge pair
18: IsMerge ← true
19: end if
20: end while
21: sortGroups(ArrayGroupList)
22: splitCacheLine(ArrayGroupList)
23: return ArrayGroupList
24: end procedure

data layout transformations breaking vectorization. We expect this heuristic to
be relaxed in the future when processors have more flexible vector capabilities
with respect to memory accesses, compared to today’s processors. The algorithm
compares all pairs of ArrayGroups to determine the profitability of merging each
pair. We use Cache-Use Factor (CUF) as a cost metric to capture the possible
cache impact of merging two or more array groups. This factor denotes cache
usage efficiency across all the candidate loops in the program. The CUF met-
ric helps limit the amount limit of merging performed by our greedy algorithm.
The pair with the highest cache-use factor is merged to form a new group. This
process is repeated until the best candidate pair for merging falls below the ac-
ceptable merge threshold. After the final grouping is determined, each group’s
arrays are sorted based on data type(largest data size to smallest data size),
to better pack them. The final step performs cache line splitting i.e. split array
groups based on cache line boundaries of an architecture, to further improve
cache line utilization within a group.

The evaluation of the profitability of merging two candidate ArrayGroups
considers two factors. The first consideration examines reads versus writes to an
ArrayGroup. Our experimental results (Section 5) showed that grouping arrays
written to frequently with arrays that are only read can decrease performance
significantly. Our current heuristic prohibits creating a new merged ArrayGroup,
if the number of write-only arrays is more than 2× the number of read and
read-write arrays The second consideration for merging ArrayGroups computes
the cache use factor for the proposed combination. If the cache use factor is
greater than our established thresholds, the ArrayGroups are viable for merging.
From our empirical results, we have chosen Cache Use threshold = 0.57 for our
algorithm. A detailed analysis to study the effects of varying this threshold across
architectures and benchmarks is a subject of future work.

5

5 Experimental Results

We ran a series of tests to evaluate the productivity and performance gains
obtained by using TALC to perform layout transformations. In Section 5.1, we
first describe our experimental methodology. We then provide a detailed discus-
sion of performance results for user-specified layouts, obtained by evaluating a
range of manual layouts on different architectures (Section 5.2). Finally, we we
present performance results obtained by using our automatic layout algorithm
(Section 5.3).

5.1 Experimental Methodology

To show the impact of data layouts on performance we ran experiments us-
ing our three benchmark programs on four different platforms: IBM Power7,
AMD APU, Intel Sandy Bridge and IBM BG/Q. IBM Power7 represents
a 32-core IBM Power 7 processor system (four eight-core 3.55 GHz proces-
sor, 32KB L1 D-Cache per core, 256KB L2 Cache, 32MB L3 Cache) used
with compiler options xlc-v11.1 -O3 -qsmp=omp -qthreaded -qhot -qtune=pwr7

-qarch=pwr7. AMD APU represents a 4-core AMD A10-5800K APU processor
(quad-core 3.8 GHz processor, 16KB L1 D-Cache per core, 4MB L2 Cache)
used with compiler options gcc-v4.7.2 -O3 -fopenmp. Intel Sandy Bridge rep-
resents a 16-core Intel E5-2670 Sandy Bridge CPU system (eight-core 2.6 GHz
processor, 32KB L1 D-Cache per core, 256KB L2 Cache per core, 20MB L3
Cache) used with compiler options icc-v12.1.5 -O3 -fast -parallel -openmp.
IBM BG/Q represents a 16-core IBM PowerPC A2 system (1.6 GHz processor,
32 MB eDRAM L2 cache) used with compiler options gcc-v4.4.6 -O3 -fopenmp.
For the AMD APU, we focused on the CPU and ignored the GPU. IRSmk and
LULESH were both run in double precision, while SRAD was run in single pre-
cision. Specifically, we ran IRSmk on a problem based on a 1003 mesh for 500
iterations. LULESH was run with a problem size = 90 (i.e. 903 elements and 913

nodes). SRAD was run for 200 iterations on a 40962 grid with the x1 and y1
speckle values set to 0, the x2 and y2 values set to 127 and lambda set to 0.5.
We made minor changes to the original source program to conform to extended
TALC framework specifications. These changes related to renaming the program
variables and did not affect program execution in any way.

All of these benchmarks use OpenMP for parallelism. We use the default
memory allocation scheme provided in these benchmarks and limited our ex-
periments to one socket. Studying the Non Uniform Memory Access (NUMA)
effects with data layouts will be part of future work. All benchmarks were run
with varying thread counts on the four platforms. For this work, we only used
the default memory allocation provided on these systems. For all codes, TALC
enabled testing a range of layouts, 9 for IRSmk and 11 for LULESH and 5 for
SRAD. To perform the layout transformations in IRSmk, between 56 and 272
(82%) lines of the original 330 lines of code were changed. For the LULESH the
numbers are 98 to 477 (18%) lines of the original 2640. For SRAD the number
are 11 to 39 (16%) lines of the original 239. By using TALC, we not only were
able to automate these changes, but also eliminate the possibility of subtle bugs

6

being introduced when these changes are performed manually (and repeated for
different architectures).

5.2 User Specified Layout Results

For each benchmark, we conducted extensive experiments across different
layouts on four architectures. However, due to space limitations, we limit the
number of layouts presented here to the most interesting ones. For each test
case, we report the speedup (which can be a slowdown, for values < 1) of
each layout against the “base case” which is the original code, running with an
equivalent number of threads. In some cases, for example IBM BG/Q for 2, 4
and 8 threads, we omit showing results for all thread counts because their results
were similar to adjacent thread counts of 1 and 16. However, full details with
results for all layouts can be found in [18].

IRSmk The implicit radiation solver (IRS) [2] is a benchmark used as part of
the procurement of the Sequoia system at LLNL. Figures 5a, 5d, 5g and 5j show
the results obtained by running IRSmk with different thread counts on all nine
layouts on each of the four platforms. IRSmk is a memory bound kernel whose
performance is limited by memory bandwidth. However, we see that except for
Sandy Bridge significant speedups occur at all thread counts due to data layouts.

The results of the best layout for IRS on all machines show performance of
at least 70% of optimal and over 95% on Sandy Bridge. For Sandy Bridge, the
execution time for the best layout is 3.05 seconds, for the AMD APU it is 10.04
seconds, for BG/Q it is 5.2 seconds and for the Power 7 it is 12.52 seconds. BG/Q
performs slightly worse than other architectures due to in-order cores not hiding
as much latency as the other processors, while the AMD APU could be hurt by
less data in the x array staying in its smaller cache. Finally, all the processors
might be limited in their handling of the unequal amount of read and write data
in IRSmk.

On the Sandy Bridge, data layouts only sped up the computation by 1.11×.
Since, the base case was already running at over 85% of peak memory bandwidth.
On the other processors, performance is significantly worse for the base case. A
related trend is that improvements from data layouts are more significant at
lower core counts. This implies two conclusions. First compute-bound codes also
benefit from data layout transformations. In the case of Sandy Bridge where
there are enough stream prefetchers for the base code and enough bandwidth
to feed a few, but not, all, cores merging arrays reduces the number of registers
used as pointers by the compiler resulting in fewer instructions and possibly
fewer pipeline stalls. Another benefit is that the number of elements accessed
in each loop from an array can be matched to cache boundaries, such as layout
9. The second observation is that for processors with an under provisioning of
prefetchers when fewer cores are used the computation becomes latency-bound.
With fewer cores to issue memory requests, the memory bus becomes idle for
a larger percentage of the time. Therefore, bandwidth is used less efficiently,
allowing for larger speedups when the core uses it more effectively.

A final observation is that not merging read only arrays in a loop with arrays
that are written increases the performance significantly. Modern architectures,

7

(a) IRSmk - IBM Power7 (b) SRAD - IBM Power7 (c) LULESH - IBM Power7

(d) IRSmk - AMD APU (e) SRAD - AMD APU (f) LULESH - AMD APU

(g) IRSmk - Intel Sandy
Bridge

(h) SRAD - Intel Sandy
Bridge

(i) LULESH - Intel Sandy
Bridge

(j) IRSmk - IBM BG/Q (k) SRAD - IBM BG/Q (l) LULESH - IBM BG/Q

Fig. 5: Benchmark performance results on different platforms with varying threads.

such as AMD APU, often implement a write buffer to combine multiple writes to
the same cache line to reduce the amount of data sent to main memory, known
as Write-Combining [1].

SRAD The SRAD benchmark [7] from the Rodinia suite performs the image
processing calculation speckle reducing anisotropic diffusion. The algorithm re-
moves speckles (locally correlated noise) from images without removing image
features. We focus on the loop that iterates over the image as it takes almost all
of the time in SRAD. Figures 5b, 5e, 5h and 5k show SRAD results for running
the five layouts on our four test platforms. Due to space constraints, we have

8

omitted the five layout details. SRAD contains many of the same trends and
results as IRSmk, but adds some new features and complexity. SRAD contains
multiple loops so there are cases where two arrays are used together in one loop
and only one array is used in another loop. Examples of this are the IN , IS
loop pair and the JW , JE set of loops. SRAD is run on more compute intense
problems where vectorization can increase its performance significantly. Our re-
sults show how some of these tensions impact performance. On the Sandy Bridge
chip with the Intel compiler SRAD gets a significant performance boost from
vector instructions. However, when data layout transformations are performed
the compiler no longer vectorizes any instructions due to the use of pointers to
the structures. The result is a performance hit from vectorization that is greater
than the gain from data layout transformations. To confirm this we ran the base
version of SRAD with compiler vectorization turned off and data layout transfor-
mations resulting in a 1.66× to 1.84× speedup from data layout transformations.
For future work, we plan on investigating how to generate array of struct of ar-
ray code(AoSoA) that the compiler can still vectorize. In the current tool, we
ignore the array references where the loop has a vector pragma associated with
it. Overall, performance gains on SRAD ranged from the minor 1.07× on most
BG/Q thread counts to 3.68× on a single thread of an AMD APU.

LULESH The largest application we focus on is the Livermore Unstruc-
tured Lagrange Explicit Shock Hydrodynamics (LULESH) mini-application [5].
LULESH solves the Sedov problem on a 3D hexahedral mesh. Different array
sizes and the fact that they are used in various combinations throughout the
loops in LULESH provide a larger search space for data layouts and tension for
data layout transformations not found in the smaller benchmarks. The version
of LULESH used in this study has undergone a variety of optimizations from
the original published code, including aggressive loop fusion and elimination of
temporary arrays [13]. Figures 5c, 5f, 5i and 5l show LULESH results for run-
ning the eleven layouts on our four test platforms. Due to space constraints, we
have omitted the eleven layout details. We only show selected interesting thread
counts (with the full data available in [18]).

Data layout transformations on LULESH were less profitable overall than for
IRSmk. This is not surprising since LULESH is a larger application than IRSmk,
and some arrays in LULESH are used together in certain places and not together
in others. Therefore, combining them together will help and hurt performance
simultaneously4. For example, layout 4 combines all four triples of x, y , z values
together. Many of these triples are used together in many functions, but not all.
However, most of the time layout 6 which leaves the triples separate is faster.
A notable exception can be seen on Power7 for a single thread, which has the
most cache, but the least bandwidth. It also suffers the most from not getting
good prefetching as shown by the IRSmk results.

The most interesting result from LULESH is that in most cases it seems the
code, not the hardware, is dictating the best data layout. On the AMD APU,
Intel Sandy Bridge and BG/Q the list of the best layouts always includes 8

4 This phenomenon motivates future work on redistributing data layouts across phases.

9

and 10 and usually, includes 2 and 3. However, the Power7 is an outlier with
its best layout being 11 for all thread counts by a significant margin for the
reasons explained above. For LULESH, as with IRSmk and SRAD, data layouts
impacted the Sandy Bridge system the least with the largest speedup seen being
only 1.02×. There are a few likely reasons for this. First, as with IRSmk, the
Sandy Bridge architecture should be able to prefetch many streams at once. Also,
in the case of bundling indirect accesses, the large re-order window of the Sandy
Bridge might hide memory latency better than the other chips. Finally, the Intel
compiler used on this platform was the best at generating SIMD instructions for
some of the compute bound loops of LULESH. Some of the data transformations
result in the compiler no longer generating SIMD instructions and, therefore,
while data layouts save on data motion in memory-bound portions of the code
they can sometimes hurt performance in the compute bound sections.

5.3 Automatic Data Layout Results
Table 2: Speedup of best Manual Layout (ML) and Automated Layout (AL) speedup

relative to base layout
Benchmark Power7-

8Threads
AMD APU-
4Threads

Sandy Bridge-
8Threads

BG/Q-
64Threads

IRSmk ML 4.70 1.46 1.11 2.20
IRSmk AL 4.67 1.43 1.10 2.08
LULESH ML 1.43 1.50 1.02 1.10
LULESH AL 1.58 1.46 0.96 1.07
SRAD ML 1.35 3.13 1.00 1.08

SRAD AL 1.20 2.55 0.46† 0.98

† Assuming vector pragma is not specified. If vector pragma is specified then results is same as ML.

Table 2 shows the speedup of the best manual layout and the automated lay-
out relative to the base layout. The results demonstrate that automated layouts
can come close to the best manual layout in most cases. In one particular case,
8 Threads on Power7 for LULESH, automated layout improved performance as
compared to manual layouts. For SRAD, automated results were close to the best
manual results for Power7 and BG/Q. However, the results fell behind manual
results for AMD APU and Sandy Bridge. In both cases, we suspect that the data
layout transformation inadvertently disabled some compiler optimizations, espe-
cially vectorization in the case of Sandy Bridge. (All results in this section were
obtained without enabling the vectorization test at the start of the automatic
layout algorithm).

6 Related Work
Past research has proposed various data layout optimization tech-

niques [6,8,9]. Here, we present a brief survey of past work, focusing on aspects
that are most closely related to our work.

Zhang et al. [20] introduced a data layout framework that targets on-chip
cache locality, specifically reducing shared cache conflicts while observing data
patterns across threads. Using polyhedral analysis, their framework rearranges
data layout tiles to reduce on-chip shared cache conflicts. However, their op-
timization currently works with single arrays. In contrast, our approach works
on merging multiple arrays and operates at the element level rather than tiles.
Henretty et al. [11] presented a data layout framework to optimize stencil opera-

10

tions on short-SIMD architectures. Their work specifically targets stream align-
ment conflicts on vector registers and uses a dimension transposition method
(non-linear data layout optimization) to mitigate the conflicts. In comparison,
our approach works for more general applications, not just stencil code. Also,
our work did not specifically address the impact of data layout on vectoriza-
tion. Ding and Kennedy [9] introduced a data-regrouping algorithm, which has
similarities to our work on automatic selection of data layouts. Their compiler
analysis merges multi-dimensional arrays based on a profitability cache analy-
sis. Dynamic regrouping was also provided for layout optimization at runtime.
Experimental results show significant improvement in cache and TLB hierarchy.
However, their results were all obtained on uniprocessor systems and it is unclear
how their approach works in the presence of data aliasing. Raman et al. [17] used
data layout transformations to reduce false sharing and improve spatial locality
in multi-threaded applications. They use an affinity based graph approach (simi-
lar to our approach) to select candidates. Inter-procedural aliasing issues arising
due to pointers is not addressed in this work. Our work is intended to explore
data layout transformations more broadly, not just for false sharing and spatial
locality. Using polyhedral layout optimization, Lu et al. [15] developed a data
layout optimization for future NUCA CMP architectures. Their work reduces
shared cache conflict on such architectures. Simulation results show significant
reductions in remote accesses. Finally, a number of papers, [10,12,16,19] have
explored the integration of loop and data layout transformations. To the best of
our knowledge, our work is the first to support both user-specified and automatic
AoS data layout transformations, while allowing the user to provide a data lay-
out specification file. Our results on the LULESH mini-application demonstrates
the importance of data layout transformations on modern multicore processors.

7 Conclusions
This paper establishes the foundation for a new approach to supporting

portable performance of scientific codes across HPC platforms. The upgraded
TALC source-to-source transformation tool permits application developers to
maintain one “neutral” data layout source code and explore architecture specific
array layouts. The new automated portion of TALC can analyze the original
source code based on platform characteristics and produces a new source code
with new array data layouts ready to be compiled and run on that system. The
results for the three test codes show that manual layouts improve performance
by 1.10× to 22.23× for IRSmk, 1.00× to 3.68× for SRAD and 1.02× to 1.82×
for LULESH with results varying with thread count and architecture. The auto-
mated algorithm achieves 95-99% of the best layout manual layout performance
for IRSmk. For LULESH the automated approach achieves 90% of the best lay-
out performance on all processors. For SRAD, automated results achieves 78%
of best manual layout performance for all architectures except for Intel Sandy-
bridge where layouts interfered with vectorization provided by Intel compiler.

Our future direction is to expand the flexibility of constraints on the original
source code to include manipulation of multi-dimensional arrays. Finally, we also
need to include enriched layouts (such as AoSoA) that reduce interference with

11

vectorization. Another interesting direction to pursue is to develop specialized
data layouts for accelerators such as GPU and Xeon Phi. We look forward to
pursuing these challenges in the future.

Acknowledgments We thank the anonymous reviewers for their feedback to im-

prove the presentation of the paper. This work was prepared by LLNL under Contract

DE-AC52-07NA27344 (LLNL-CONF-672056). The opinions and findings in this doc-

ument do not necessarily reflect the views of the US Government, Rice University or

LLNL.

References
1. AMD64 Architecture Programmer’s Manual Volume 2.
2. ASC Sequoia Benchmark. https://asc.llnl.gov/sequoia/benchmarks/.
3. Extended TALC Infrastructure. https://github.com/rose-compiler/

edg4x-rose/tree/master/projects/TALCDataLayout.
4. ROSE Compiler Infrastructure. http://rosecompiler.org/.
5. Hydrodynamics Challenge Problem. Technical Report LLNL-TR-490254, LLNL,

July 2011. https://computation.llnl.gov/casc/ShockHydro.
6. B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data placement.

ACM ASPLOS VIII, pages 139–149, 1998.
7. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. IEEE IISWC 2009.
8. T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout.

PLDI ’99, pages 1–12, 1999.
9. C. Ding and K. Kennedy. Inter-array data regrouping. LCPC ’99.

10. C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. IEEE IPDPS ’01, 2001.

11. T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and P. Sa-
dayappan. Data layout transformation for stencil computations on short-vector
simd architectures. CC’11/ETAPS’11, 2011.

12. M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. A framework for
interprocedural locality optimization using both loop and data layout transforma-
tions. IEEE ICPP ’99, 1999.

13. I. Karlin, J. McGraw, J. Keasler, and C. Still. Tuning the LULESH Mini-app for
Current and Future Hardware. In (NECDC12), December 2012.

14. J. Keasler, T. Jones, and D. Quinlan. TALC: A Simple C Language Extension
For Improved Performance and Code Maintainability. In 9th LCI International
Conference on High-Performance Clustered Computing, April 2008.

15. Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T.-f. Ngai. Data layout trans-
formation for enhancing data locality on nuca chip multiprocessors. IEEE PACT
’09, 2009.

16. M. F. P. O’Boyle and P. M. W. Knijnenburg. Efficient parallelization using com-
bined loop and data transformations. PACT ’99, 1999.

17. E. Raman, R. Hundt, and S. Mannarswamy. Structure layout optimization for
multithreaded programs. IEEE CGO ’07, 2007.

18. K. Sharma, I. Karlin, J. Keasler, J. R. McGraw, and V. Sarkar. User-
Specified and Automatic Data Layout Selection for Portable Performance,
April 2013. http://cohesion.rice.edu/engineering/computerscience/tr/TR_
Download.cfm?SDID=307.

19. M. Taylan Kandemir. Improving whole-program locality using intra-procedural
and inter-procedural transformations. J. Parallel Distrib. Comput., 65(5):564–582,
May 2005.

20. Y. Zhang, W. Ding, J. Liu, and M. Kandemir. Optimizing data layouts for parallel
computation on multicores. PACT ’11, 2011.

12

